论文标题

关于第二种独立收集过程的至少独立收集过程

On the minimum of independent collecting processes via the Stirling numbers of the second kind

论文作者

Doumas, Aristides V.

论文摘要

我们考虑了组合问题,其中$ p $播放器的目标是统一分布的一组$ n $不同类型的物品(物种)。让随机变量$ t_ {n(i)},\,\,\,i = 1,2,\ cdots,p $表示所需的试验次数,直到每个播放器分别检测到所有$ n $类型(至少一次)。本文研究了数字$ p $在期望的渐近学,第二刻的渐近学中的影响,以及随机变量\ begin \ begin {equation*} m_ {n(p)}:= \ bigwedge_ {i = 1}^p t_} \ end {equation*}这些量化表达式的主要成分是涉及第二类的stirl数字的总和;为此探讨了渐近学。在论文的最后,我们在交替的二项式总和上猜想了出色的\ textit {combinatorial Identity}。这些总和已由P. Flajolet(主要是)研究,因为它们应用于数字搜索树和Quadtrees。

We consider the combinatorial problem where $p$ players aim to a complete set of $N$ different types of items (species) which are uniformly distributed. Let the random variables $T_{N(i)},\,\,i=1,2,\cdots,p$ denoting the number of trials needed until all $N$ types are detected (at least once), respectively for each player. This paper studies the impact of the number $p$ in the asymptotics of the expectation, the second moment, and the variance of the random variable \begin{equation*} M_{N(p)}: = \bigwedge_{i=1}^p T_{N(i)},\,\,\,\,\,\,N\rightarrow \infty. \end{equation*} The main ingredient in the expression of these quantittes are sums involving the Stirling numbers of the second kind; for which the asymptotics are explored. At the end of the paper we conjecture on a remarkable \textit{combinatorial identity}, regarding alternating binomial sums. These sums have been studied (mainly) by P. Flajolet due to their applications to digital search trees and quadtrees.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源