论文标题

使用编码存储的私人信息交付

Private Information Delivery with Coded Storage

论文作者

Vaidya, Kanishak, Rajan, B Sundar

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In private information delivery (PID) problem, there are $K$ messages stored across $N$ servers, each capable of storing $M$ messages and a user. Servers want to convey one of the $K$ messages to the user without revealing the identity (index) of the message conveyed. The capacity of PID problem is defined as maximum number of bits of the desired message that can be conveyed privately, per bit of total communication, to the user. For the restricted case of replicated systems, where coded messages or splitting one message into several servers is not allowed, the capacity of PID has been characterized by Hua Sun in "Private Information Delivery, IEEE Transactions on Information Theory, December 2020" in terms of $K, N$ and $M.$ In this paper, we study the problem of PID with coded storage at the servers. For a class of problems called {\it bi-regular PID} we characterize the capacity for $N=K/M$ and for $N>K/M$ we provide an achievable scheme. In both the cases the rates achieved are more than the rates achievable with the replicated systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源