论文标题

量子位和大门的谐波流场表示

Harmonic flow field representations of quantum bits and gates

论文作者

Patil, Vishal P., Kos, Žiga, Dunkel, Jörn

论文摘要

我们描述了将任意$ n $ qubit状态映射到二维(2D)向量字段的一般程序。映射使用单个Qubits的复杂合理函数表示形式,产生经典的向量场配置,可以用2D Inviscid流体流或电场来解释。基本量子位在2D谐波矢量场中具有局部缺陷,并且通过矢量场产物的复杂叠加来找到自然的场表示。特别是,可分离状态显示为高度对称的流程配置,使它们在动态和视觉上与纠缠状态不同。纠缠量子状态的结果真实空间表示可以在量子逻辑操作下直观地可视化其转换。我们为量子傅立叶变换和其他量子算法提供了量子傅立叶变换和发现过程。由于其通用结构,映射程序表明了将概念(例如纠缠或纠缠熵)扩展到经典连续体系统的可能性,因此可能有助于指导新的实验方法来存储信息存储和非标准计算。

We describe a general procedure for mapping arbitrary $n$-qubit states to two-dimensional (2D) vector fields. The mappings use complex rational function representations of individual qubits, producing classical vector field configurations that can be interpreted in terms of 2D inviscid fluid flows or electric fields. Elementary qubits are identified with localized defects in 2D harmonic vector fields, and multi-qubit states find natural field representations via complex superpositions of vector field products. In particular, separable states appear as highly symmetric flow configurations, making them both dynamically and visually distinct from entangled states. The resulting real-space representations of entangled qubit states enable an intuitive visualization of their transformations under quantum logic operations. We demonstrate this for the quantum Fourier transform and the period finding process underlying Shor's algorithm, along with other quantum algorithms. Due to its generic construction, the mapping procedure suggests the possibility of extending concepts such as entanglement or entanglement entropy to classical continuum systems, and thus may help guide new experimental approaches to information storage and non-standard computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源