论文标题

旋转开普勒问题的ECH能力

The ECH capacities for the rotating Kepler problem

论文作者

Mohebbi, Amin

论文摘要

在本文中,当能量小于或等于关键能量值$ - \ dfrac {3} {2} $时,我将计算旋转开普勒问题的ECH镜头。为了计算ECH-CAPACITIT,我将使用旋转开普勒问题的特殊凹形曲线域,这在[arxiv:2108.04581]中进行了解释,并获得了特殊的凹室域的权重。我将使用一种新方法通过新树(Arxiv:2108.04581)来计算权重,然后向他们下订单进行计算所需的订单。权重是连续功能属于能量参数。因此,我们可以将计算用于低于关键能量的所有能级。最后,我们将证明第一个重量是所有能量$ c \ leq - \ dfrac {3} {2} $的最大重量,并将看到关键能量的eCh -capacities计算的数值示例。

In this paper, I am going to compute the ECH-capacities of the rotating Kepler problem when the energy is less than or equal to the critical energy value $-\dfrac{3}{2}$. To compute the ECH-capacities, I will use the special concave toric domain of the rotating Kepler problem, that is explained in [arXiv:2108.04581] and obtain the weights of the special concave toric domain. I will use a new method to compute the weights via the new tree [arXiv:2108.04581] and then give an order to them that is necessary to do the computation. The weights are continuous function belongs to the energy parameter. So we can use the computation for all energy level below the critical energy. Finally, we will prove that the first weight is the biggest weight for all energy $c \leq -\dfrac{3}{2}$ and will see a numerical example of the ECH-capacities computation for the critical energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源