论文标题
基于本体的攻击图丰富
Ontology-based Attack Graph Enrichment
论文作者
论文摘要
攻击图提供了对手可以进行攻击系统的可能动作的表示。网络安全专家使用它们来做出决定,例如决定补救和恢复计划。可以使用不同的方法来构建此类图。我们专注于基于谓词逻辑的逻辑攻击图,以定义对抗性动作的因果关系。由于网络和漏洞正在不断变化(例如,新应用程序安装在系统设备上,更新的服务将被公开曝光等),因此我们建议使用谓词的语义增强后处理来丰富攻击图生成方法。现在,图表映射到监视警报,确认成功的攻击动作并根据网络和漏洞更改进行更新。结果,谓词根据攻击证据和本体学丰富而定期更新。这允许验证变化是否导致攻击者达到初始目标或对初始图中未预料到的系统造成进一步的损害。我们说明了影响智能城市的网络物理安全的特定领域下的方法。我们使用现有工具和本体论来验证该方法。
Attack graphs provide a representation of possible actions that adversaries can perpetrate to attack a system. They are used by cybersecurity experts to make decisions, e.g., to decide remediation and recovery plans. Different approaches can be used to build such graphs. We focus on logical attack graphs, based on predicate logic, to define the causality of adversarial actions. Since networks and vulnerabilities are constantly changing (e.g., new applications get installed on system devices, updated services get publicly exposed, etc.), we propose to enrich the attack graph generation approach with a semantic augmentation post-processing of the predicates. Graphs are now mapped to monitoring alerts confirming successful attack actions and updated according to network and vulnerability changes. As a result, predicates get periodically updated, based on attack evidences and ontology enrichment. This allows to verify whether changes lead the attacker to the initial goals or to cause further damage to the system not anticipated in the initial graphs. We illustrate the approach under the specific domain of cyber-physical security affecting smart cities. We validate the approach using existing tools and ontologies.