论文标题
Kagome磁铁Fe3sn2薄膜中的大量可调节的Weyl Fermions
Plethora of tunable Weyl fermions in kagome magnet Fe3Sn2 thin films
论文作者
论文摘要
在非常规磁体中磁性和电子带拓扑的相互作用可以使新型电子现象的创造和精细控制。在这项工作中,我们使用扫描隧道显微镜和光谱学来研究典型的kagome磁铁FE3SN2的薄膜。我们的实验表明,横跨费米水平的密集分布的光谱特征异常大。这些与低能量的Weyl费米子和相关的拓扑式弧形表面状态相一致。通过测量其响应是磁场的函数,我们发现了与磁化方向相关的能量的明显演变。电子散射和干扰成像进一步证明了相关电子状态的子集的可调性。我们的实验提供了第一个可视化的可视化,即原位自旋的重新定向如何驱动Weyl Fermion带结构状态的电子密度变化。再加上先前关于大规模的迪拉克费米,平坦带和电子命名的报道,我们的工作将FE3SN2建立为一个独特的平台,它具有非常宽的拓扑和相关的电子现象。
Interplay of magnetism and electronic band topology in unconventional magnets enables the creation and fine control of novel electronic phenomena. In this work, we use scanning tunneling microscopy and spectroscopy to study thin films of a prototypical kagome magnet Fe3Sn2. Our experiments reveal an unusually large number of densely-spaced spectroscopic features straddling the Fermi level. These are consistent with signatures of low-energy Weyl fermions and associated topological Fermi arc surface states predicted by theory. By measuring their response as a function of magnetic field, we discover a pronounced evolution in energy tied to the magnetization direction. Electron scattering and interference imaging further demonstrates the tunable nature of a subset of related electronic states. Our experiments provide the first visualization of how in-situ spin reorientation drives changes in the electronic density of states of the Weyl fermion band structure. Combined with previous reports of massive Dirac fermions, flat bands and electronic nematicity, our work establishes Fe3Sn2 as a unique platform that harbors an extraordinarily wide array of topological and correlated electron phenomena.