论文标题

小型持有人灌溉检测的多尺度时空方法

A multiscale spatiotemporal approach for smallholder irrigation detection

论文作者

Conlon, Terence, Small, Christopher, Modi, Vijay

论文摘要

在提出一种利用植被丰度多尺度卫星图像的灌溉检测方法时,本文介绍了一个补充有限的地面收集标签的过程,并确保分类器适用于感兴趣的领域。 MODIS的时空分析250m增强的植被指数(EVI)的时间表,其特征是在区域尺度上的天然植被候位,以为连续的物候图提供了基础,该图指导了对灌溉和非灌溉农业的补充标签收集。随后,在10m Sentinel-2图像中观察到的经过验证的干旱季节绿色和衰老周期用于训练一组分类器,以自动检测潜在的小型持有人灌溉。展示了改善模型鲁棒性的策略,包括一种随机转移训练样本的数据增强方法;并评估分类器类型,这些分类器类型在扣留目标区域中产生最佳性能。该方法用于检测埃塞俄比亚高地,Tigray和Amhara的两个州的小农灌溉。结果表明,基于变压器的神经网络结构允许在固定区域中最强的预测性能,然后紧密地进行了catboost随机森林模型。在扣留地面调查标签上,基于变压器的模型可在未灌溉样品中获得96.7%的精度,而在灌溉样品中的精度为95.9%。在通过引入的标签补充方法独立收集的一组较大的样品上,分别以98.3%和95.5%的精度预测了未灌溉和灌溉标签。然后将检测模型部署在Tigray和Amhara上,揭示了农作物轮作模式和全年灌溉面积的变化。预测表明,从2020年到2021年,这两个状态的灌溉面积减少了约40%。

In presenting an irrigation detection methodology that leverages multiscale satellite imagery of vegetation abundance, this paper introduces a process to supplement limited ground-collected labels and ensure classifier applicability in an area of interest. Spatiotemporal analysis of MODIS 250m Enhanced Vegetation Index (EVI) timeseries characterizes native vegetation phenologies at regional scale to provide the basis for a continuous phenology map that guides supplementary label collection over irrigated and non-irrigated agriculture. Subsequently, validated dry season greening and senescence cycles observed in 10m Sentinel-2 imagery are used to train a suite of classifiers for automated detection of potential smallholder irrigation. Strategies to improve model robustness are demonstrated, including a method of data augmentation that randomly shifts training samples; and an assessment of classifier types that produce the best performance in withheld target regions. The methodology is applied to detect smallholder irrigation in two states in the Ethiopian highlands, Tigray and Amhara. Results show that a transformer-based neural network architecture allows for the most robust prediction performance in withheld regions, followed closely by a CatBoost random forest model. Over withheld ground-collection survey labels, the transformer-based model achieves 96.7% accuracy over non-irrigated samples and 95.9% accuracy over irrigated samples. Over a larger set of samples independently collected via the introduced method of label supplementation, non-irrigated and irrigated labels are predicted with 98.3% and 95.5% accuracy, respectively. The detection model is then deployed over Tigray and Amhara, revealing crop rotation patterns and year-over-year irrigated area change. Predictions suggest that irrigated area in these two states has decreased by approximately 40% from 2020 to 2021.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源