论文标题

在不确定性下降低非线性光谱维度

Non-Linear Spectral Dimensionality Reduction Under Uncertainty

论文作者

Laakom, Firas, Raitoharju, Jenni, Passalis, Nikolaos, Iosifidis, Alexandros, Gabbouj, Moncef

论文摘要

在本文中,我们考虑了从理论和算法的角度来看,在不确定性下,非线性维度降低的问题。由于现实世界中的数据通常包含具有不确定性和人工制品的测量结果,因此所提出的框架中的输入空间由概率分布组成,以模拟与每个样本相关的不确定性。我们提出了一个称为NGEU的新维度缩小框架,该框架利用不确定性信息,直接扩展了几种传统方法,例如KPCA,MDA/KMFA,以作为输入概率分布而不是原始数据接收。我们表明,提出的NGEU公式表现出全局封闭形式的解决方案,我们根据Rademacher的复杂性分析了基本不确定性理论如何影响框架的普遍化能力。不同数据集的经验结果显示了提出的框架的有效性。

In this paper, we consider the problem of non-linear dimensionality reduction under uncertainty, both from a theoretical and algorithmic perspectives. Since real-world data usually contain measurements with uncertainties and artifacts, the input space in the proposed framework consists of probability distributions to model the uncertainties associated with each sample. We propose a new dimensionality reduction framework, called NGEU, which leverages uncertainty information and directly extends several traditional approaches, e.g., KPCA, MDA/KMFA, to receive as inputs the probability distributions instead of the original data. We show that the proposed NGEU formulation exhibits a global closed-form solution, and we analyze, based on the Rademacher complexity, how the underlying uncertainties theoretically affect the generalization ability of the framework. Empirical results on different datasets show the effectiveness of the proposed framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源