论文标题

对于圆环上部分双曲动作的某些等轴测扩展的刚度属性

Rigidity properties for some isometric extensions of partially hyperbolic actions on the torus

论文作者

Chen, Qinbo, Damjanović, Danijela

论文摘要

本文研究了某些等距的圆环扩展,以部分双曲线$ \ mathbb {z}^k $($ k \ geqslant 2 $)的动作。我们证明,如果操作的平稳扰动满足交叉路口的属性,则证明了此类动作的局部刚性结果。我们还在保留一系列量的操作中给出了局部刚性结果。我们的方法主要使用KAM迭代方案的概括。

This paper studies local rigidity for some isometric toral extensions of partially hyperbolic $\mathbb{Z}^k$ ($k\geqslant 2$) actions on the torus. We prove a $C^\infty$ local rigidity result for such actions, provided that the smooth perturbations of the actions satisfy the intersection property. We also give a local rigidity result within a class of volume preserving actions. Our method mainly uses a generalization of the KAM iterative scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源