论文标题
具有异质时间序列数据的两阶段深度异常检测
Two-Stage Deep Anomaly Detection with Heterogeneous Time Series Data
论文作者
论文摘要
我们使用从工厂装配线收集的制造数据集引入了数据驱动的异常检测框架。给定由操作周期信号和传感器信号组成的异质时间序列数据,我们旨在发现异常事件。通过我们的经验发现,传统的单阶段基准方法可能在我们具有挑战性的情况下可能不会表现出令人满意的表现,我们提出了一个两阶段的深度异常检测(TDAD)框架,在这种框架中,根据信号类型,采用了两种不同的无人看管学习模型。在第一阶段,我们使用通过操作周期信号训练的模型选择候选候选物。在第二阶段,我们最终通过使用另一个模型来检测候选人的异常事件,该模型适合通过传感器信号训练的时间连续性。我们框架的一个可区分特征是,首先利用操作周期信号来发现可能的点,而传感器信号则是在后来滤除不可能的异常点的。我们的实验全面证明了优于单阶段基准方法,模型 - 不合Snostic特性以及对困难情况的鲁棒性。
We introduce a data-driven anomaly detection framework using a manufacturing dataset collected from a factory assembly line. Given heterogeneous time series data consisting of operation cycle signals and sensor signals, we aim at discovering abnormal events. Motivated by our empirical findings that conventional single-stage benchmark approaches may not exhibit satisfactory performance under our challenging circumstances, we propose a two-stage deep anomaly detection (TDAD) framework in which two different unsupervised learning models are adopted depending on types of signals. In Stage I, we select anomaly candidates by using a model trained by operation cycle signals; in Stage II, we finally detect abnormal events out of the candidates by using another model, which is suitable for taking advantage of temporal continuity, trained by sensor signals. A distinguishable feature of our framework is that operation cycle signals are exploited first to find likely anomalous points, whereas sensor signals are leveraged to filter out unlikely anomalous points afterward. Our experiments comprehensively demonstrate the superiority over single-stage benchmark approaches, the model-agnostic property, and the robustness to difficult situations.