论文标题
改善了冈村 - 西摩度量的压缩
Improved Compression of the Okamura-Seymour Metric
论文作者
论文摘要
令$ g =(v,e)$为未向未加权的平面图。考虑一个矢量存储从任意顶点$ v $到所有顶点的距离$ s = \ {s_1,s_2,\ ldots,s_k \} $按其周期顺序。 $ v $的模式是通过在该向量的每对连续值之间的差来获得的。在Stoc'19中,Li和Parter使用VC-Dimension参数来表明,在平面图中,不同模式的数量(表示为$ x $)仅为$ O(k^3)$。这导致了一个简单的压缩方案,需要$ \ tilde o(\ min \ {k^4+| t |,k \ cdot | t | \})$空间以编码$ s $和终端顶点的子集$ t \ subseteq v $之间的距离。这被称为Okamura-Seymour公制压缩问题。 我们给出了$ x = o(k^3)$绑定的替代证明,该证明利用了超出VC-dimension参数的平面度。也就是说,我们的证明依赖于切割周期双重性,以及$ s $的顶点之间的距离是$ k $的。我们的方法意味着以下内容: (1)$ \ tilde {o}(x+k+| t |)$ okamura-seymour公制的空间压缩,从而将li和parter的压缩提高到$ \ tilde o(\ min \ min \ \ s^3+| t |,k \ cdot | t | \})$。 (2)最佳$ \ tilde {o}(k+| t |)$ okamura-seymour公制的空间压缩,如果$ t $的顶点在$ g $中诱导连接的组件。 (3)Halin图的家族的$ x =θ(k^2)$的紧密界限,而VC-Dimension参数仅限于显示$ x = o(k^3)$。
Let $G=(V,E)$ be an undirected unweighted planar graph. Consider a vector storing the distances from an arbitrary vertex $v$ to all vertices $S = \{ s_1 , s_2 , \ldots , s_k \}$ of a single face in their cyclic order. The pattern of $v$ is obtained by taking the difference between every pair of consecutive values of this vector. In STOC'19, Li and Parter used a VC-dimension argument to show that in planar graphs, the number of distinct patterns, denoted $x$, is only $O(k^3)$. This resulted in a simple compression scheme requiring $\tilde O(\min \{ k^4+|T|, k\cdot |T|\})$ space to encode the distances between $S$ and a subset of terminal vertices $T \subseteq V$. This is known as the Okamura-Seymour metric compression problem. We give an alternative proof of the $x=O(k^3)$ bound that exploits planarity beyond the VC-dimension argument. Namely, our proof relies on cut-cycle duality, as well as on the fact that distances among vertices of $S$ are bounded by $k$. Our method implies the following: (1) An $\tilde{O}(x+k+|T|)$ space compression of the Okamura-Seymour metric, thus improving the compression of Li and Parter to $\tilde O(\min \{k^3+|T|,k \cdot |T| \})$. (2) An optimal $\tilde{O}(k+|T|)$ space compression of the Okamura-Seymour metric, in the case where the vertices of $T$ induce a connected component in $G$. (3) A tight bound of $x = Θ(k^2)$ for the family of Halin graphs, whereas the VC-dimension argument is limited to showing $x=O(k^3)$.