论文标题
在测试时改编神经网络的专家领域
A Field of Experts Prior for Adapting Neural Networks at Test Time
论文作者
论文摘要
图像分析任务中卷积神经网络(CNN)的性能通常在训练和测试图像之间存在与采集相关的分布变化的情况下会损坏。最近,有人提出通过为每个测试图像微调训练有素的CNN来解决此问题。这种测试时间适应(TTA)是改善分配转移稳健性的有前途且实用的策略,因为它既不需要机构之间的数据共享,也不需要注释其他数据。以前的TTA方法使用助手模型来增加从测试图像中与训练图像提取的功能之间的相似性和/或特征。通常使用CNN建模的这些帮助者可能是特定于任务的,并且本身很容易受到输入的分配变化。为了克服这些问题,我们建议通过以前的特征和训练图像的特征分布来匹配测试和训练图像的特征分布来执行TTA。敌人将复杂的概率分布建模为许多简单的专家分布的产品。我们将训练有素的任务CNN功能的1D边缘分布作为敌人模型的专家。此外,我们计算了CNN功能的补丁的主要组件,并将PCA载荷的分布视为其他专家。我们使用来自17个诊所的数据以及使用3个诊所的数据,使用来自17个诊所的数据和MRI注册任务的5个MRI分割任务(4个解剖学区域的健康组织和病变的健康组织)验证该方法。我们发现,所提出的基于敌人的TTA通常适用于多个任务,并且优于所有先前的TTA方法用于病变细分。对于健康的组织分割,该建议的方法的表现优于其他任务不合稳定方法,但是专门针对分割设计的先前的TTA方法对于大多数测试的数据集都表现最好。我们的代码公开可用。
Performance of convolutional neural networks (CNNs) in image analysis tasks is often marred in the presence of acquisition-related distribution shifts between training and test images. Recently, it has been proposed to tackle this problem by fine-tuning trained CNNs for each test image. Such test-time-adaptation (TTA) is a promising and practical strategy for improving robustness to distribution shifts as it requires neither data sharing between institutions nor annotating additional data. Previous TTA methods use a helper model to increase similarity between outputs and/or features extracted from a test image with those of the training images. Such helpers, which are typically modeled using CNNs, can be task-specific and themselves vulnerable to distribution shifts in their inputs. To overcome these problems, we propose to carry out TTA by matching the feature distributions of test and training images, as modelled by a field-of-experts (FoE) prior. FoEs model complicated probability distributions as products of many simpler expert distributions. We use 1D marginal distributions of a trained task CNN's features as experts in the FoE model. Further, we compute principal components of patches of the task CNN's features, and consider the distributions of PCA loadings as additional experts. We validate the method on 5 MRI segmentation tasks (healthy tissues in 4 anatomical regions and lesions in 1 one anatomy), using data from 17 clinics, and on a MRI registration task, using data from 3 clinics. We find that the proposed FoE-based TTA is generically applicable in multiple tasks, and outperforms all previous TTA methods for lesion segmentation. For healthy tissue segmentation, the proposed method outperforms other task-agnostic methods, but a previous TTA method which is specifically designed for segmentation performs the best for most of the tested datasets. Our code is publicly available.