论文标题
具有有界的雕刻仪基础和深度参数的矩阵的表征以及整数编程的应用
Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming
论文作者
论文摘要
关于整数编程的固定参数障碍性的大量研究集中在于利用约束矩阵$ a $的稀疏性与其雕刻仪基础元素的规范之间的关系。特别是,当由原始树深度和$ a $的输入复杂性参数化时,整数编程是固定的参数,当通过双树深度和$ a $的入口复杂度进行参数时;这两个参数化都表明$ a $稀疏,尤其是其非零条目的数量分别在列或行的数量中是线性的。 我们研究的预处理将给定矩阵转换为一个等效的稀疏基质(如果存在),并提供结构性结果,这些结果表征了稀疏的行等效矩阵,就相关柱矩阵的结构特性而言。特别是,我们的结果表明,GRAVER基础的$ \ ell_1 $ - 由$ a $的电路的最大$ \ ell_1 $ -norm的函数界定。我们使用结果来设计一种参数化算法,该算法与输入矩阵$ a $构建矩阵行相等,如果存在这样的行等值矩阵,该矩阵$ a $具有很小的原始/双树 - 深度和入口复杂性。 当由约束矩阵的graver基础的$ \ ell_1 $ norm进行参数时,我们的结果在整数编程中产生参数化的算法,当由约束矩阵的电路的$ \ ell_1 $ norm通过约束矩阵的电路进行参数时,当由最小的原始树木数据和矩阵的参数限制时,当时是矩阵的约束矩阵的参数和矩阵的参数。与约束矩阵等效的矩阵行相等的最小双树深度和进入复杂性。
An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix $A$ and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of $A$, and when parameterized by the dual tree-depth and the entry complexity of $A$; both these parameterization imply that $A$ is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to a row-equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse row-equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the $\ell_1$-norm of the Graver basis is bounded by a function of the maximum $\ell_1$-norm of a circuit of $A$. We use our results to design a parameterized algorithm that constructs a matrix row-equivalent to an input matrix $A$ that has small primal/dual tree-depth and entry complexity if such a row-equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the $\ell_1$-norm of the Graver basis of the constraint matrix, when parameterized by the $\ell_1$-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix row-equivalent to the constraint matrix.