论文标题

扰动性非线性量子运输I的理论:智障相关器的一般公式和结构

Theory of perturbatively nonlinear quantum transport I: general formulation and structure of the retarded correlator

论文作者

Bonbien, Varga, Manchon, Aurelien

论文摘要

本文是三部曲中的第一篇,它涉及一般量子系统扰动响应的各个方面,可能是非平凡的基态几何形状,超出了线性秩序。在这里,我们使用组理论考虑来研究延迟的相关器的结构,并证明它们如何根据“时间反向组”和相关的置换组的不可还原表示形式进行分解,并且以前的探测耗散和时间逆转属性以及后者的脉络性配置属性以及纵向的纵向及其透明度,跨性别,跨性别,跨性别。我们建立了二阶波动散落和波动反应定理,并将它们连接到众所周知的二阶传输效果,例如移位和注入电流。利用一般线性组的不可还原表示与置换组的不可还原表示之间的二重性,我们展示了如何通过32点组描述的不同晶体来支持分解中的哪个术语,并对等级3和4极性和轴向张力张子进行全点组分类。我们的结果为提取与弱势相关因子的独特物理效应提取了正式的基础。在第三部分中给出了选定案例中二阶费用当前响应的申请。

This article is the first of a trilogy that addresses various aspects of the perturbative response of general quantum systems, with possibly nontrivial ground state geometry, beyond linear order. Here, we use group theoretical considerations to investigate the structure of retarded correlators, and demonstrate how they decompose according to irreducible representations of a `time-reversal group' and relevant permutation groups, with the former probing dissipative and time-reversal properties, and the latter discerning configurational properties -- longitudinal, transverse and their generalizations. We establish second order fluctuation-dissipation and fluctuation-reaction theorems, and connect them to well-known second order transport effects such as the shift and injection currents. Exploiting the Schur-Weyl duality between irreducible representations of general linear groups and irreducible representations of permutation groups, we show how to decide which terms in the decomposition based on the latter can be supported by different crystals described via the 32 point groups, and perform the full point group classification for rank 3 and 4 polar and axial tensors. Our results provide a formal basis for the extraction of uniquely differing physical effects from retarded correlators. Applications to second order charge current responses in selected cases are given in part III.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源