论文标题
部分可观测时空混沌系统的无模型预测
Ultra-Compact accurate wave functions for He-like and Li-like iso-electronic sequences and variational calculus. III. Spin-quartet state of the Lithium sequence
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
As a continuation of Part I, dedicated to the ground state of He-like and Li-like isoelectronic sequences for nuclear charges $Z \leq 20$, and Part II, dedicated to two excited states of He-like sequence, two ultra-compact wave functions in the form of generalized Guevara-Harris-Turbiner functions are constructed for Li-like sequence. They describe accurately the domain of applicability of the Quantum Mechanics of Coulomb Charges (QMCC) for energies (2-3 significant digits (s.d.)) of the spin-quartet state $1^40^+$ of Li-like ions (in static approximation with point-like, infinitely heavy nuclei). Variational parameters are fitted in $Z$ by 2nd degree polynomials. The most accurate ultra-compact function leads to the absolute accuracy $\sim 10^{-3}$\,a.u. for energy, and $\sim 10^{-4}$ for the normalized electron-nuclear cusp parameter for $Z \leq 20$. Critical charge $Z=Z_B$, where the ultra-compact trial function for the $1^40^+$ state looses its square-integrability, is estimated, $Z_B(1^4\,0^+) \sim 1.26 - 1.30$. As a complement to Part I, square integrability for the compact functions constructed for the {\it ground, spin-doublet state} $1^2\,0^+$ of the Li-like sequence is discussed. The critical charge, for which these functions stop to be normalizable, is estimated as $Z_B( 1^2\,0^+) = 1.62 - 1.65$. It implies that at $Z=2$ - the negative helium ion He${}^-$ - both states $1^2\,0^+$ and $1^4\,0^+$ exist as states embedded to continuum.