论文标题
综合葡萄干化微生物体中的孤子微蛋白酶
Soliton Microcombs in Integrated Chalcogenide Microresonators
论文作者
论文摘要
光子综合微型群岛已在光学通信,微波合成和光学计量学中启用了高级应用,在自然界中,它们在腔体增强的非线性过程中揭示了光学耗散孤子模式。 Microcombs的最决定性因素在于光子材料平台,高度非线性和高质量芯片整合能力的材料受到高度要求。在这项工作中,我们提出了用于非线性光子整合和耗散型孤子微圆后生成的家庭开发的奶油蛋白酶玻璃杯-GE25SB10S65(GESB)。与当前的集成非线性平台相比,GESB具有从可见光到11 UM区域的更大透明度,更强的非线性和较低的热浪费系数,并且在制造中兼容CMOS。在这个平台中,我们实现了芯片集成的光学微孔子,其质量(Q)因子高于2 x 10^6,并进行了石印度控制的分散工程。特别是,我们证明,在不同的分散度下,在单个微孔子中生成了一个明亮的基于孤子的微重梳和深色脉冲梳子。总体抽水功率在十毫米水平上,由微孔子的高质量因子和高材料非线性决定。我们的结果可能有助于具有高度紧凑和高强度非线性相互作用的替代材料平台的非线性光子学领域,而在应用方面,有助于低操作功率下的Soliton Microcombs的开发,这可能是单层集成的光学频率combs所需的。
Photonic integrated microcombs have enabled advanced applications in optical communication, microwave synthesis, and optical metrology, which in nature unveil an optical dissipative soliton pattern under cavity-enhanced nonlinear processes. The most decisive factor of microcombs lies in the photonic material platforms, where materials with high nonlinearity and in capacity of high-quality chip integration are highly demanded. In this work, we present a home-developed chalcogenide glasses-Ge25Sb10S65 (GeSbS) for the nonlinear photonic integration and for the dissipative soliton microcomb generation. Compared with the current integrated nonlinear platforms, the GeSbS features wider transparency from the visible to 11 um region, stronger nonlinearity, and lower thermo-refractive coefficient, and is CMOS compatible in fabrication. In this platform, we achieve chip-integrated optical microresonators with a quality (Q) factor above 2 x 10^6, and carry out lithographically controlled dispersion engineering. In particular, we demonstrate that both a bright soliton-based microcomb and a dark-pulsed comb are generated in a single microresonator, in its separated fundamental polarized mode families under different dispersion regimes. The overall pumping power is on the ten-milliwatt level, determined by both the high Q-factor and the high material nonlinearity of the microresonator. Our results may contribute to the field of nonlinear photonics with an alternative material platform for highly compact and high-intensity nonlinear interactions, while on the application aspect, contribute to the development of soliton microcombs at low operation power, which is potentially required for monolithically integrated optical frequency combs.