论文标题

普遍无关的机器调度问题

Generalized Unrelated Machine Scheduling Problem

论文作者

Deng, Shichuan, Li, Jian, Rabani, Yuval

论文摘要

我们研究了通用的负载平衡问题(GLB)问题,其中我们得到了$ n $作业,每个作业都需要分配给带有处理时间$ \ {p_ {ij {ij} \} $的$ m $无关机器之一。在工作分配$σ$下,每台机器$ i $的负载是$ψ_i(\ Mathbf {p} _ {i} [σ])$其中$ψ_I:\ Mathbb {r}^n \ rightArrow \ rightArrow \ rightArrow \ Mathbb {r} _ {r} _ {r} _ {\ geq0} $ \ mathbf {p} _ {i} [σ] $是$ n $ -dimensional vector $ \ {p_ {ij} \ cdot \ cdot \ mathbf {1} [σ(j)= I]我们的目标是最大程度地减少$ ϕ:\ mathbb {r}^m \ rightArrow \ rightArrow \ Mathbb {r} _ {\ geQ0} $是另一个对称单调单调的norm and $ allot lotal-math unita $ m,向量。这个问题大大概括了许多经典的优化问题,例如MakePAN最小化,设定覆盖率,最小值负荷平衡等。 我们获得了一个多项式时间随机算法,该算法达到$ O(\ log n)$的近似系数,将设置覆盖的下限与恒定因子相匹配。我们通过将新型配置LP放松与指数数量的变量来实现这一目标。要大致求解配置LP,我们为其双重程序设计了一个近似的分离甲骨文。特别是,可以使用线性约束(normlin)问题将分离甲骨文简化为规范最小化,并为其设计一个多项式时间近似方案(PTA),这可能具有独立的关注。

We study the generalized load-balancing (GLB) problem, where we are given $n$ jobs, each of which needs to be assigned to one of $m$ unrelated machines with processing times $\{p_{ij}\}$. Under a job assignment $σ$, the load of each machine $i$ is $ψ_i(\mathbf{p}_{i}[σ])$ where $ψ_i:\mathbb{R}^n\rightarrow\mathbb{R}_{\geq0}$ is a symmetric monotone norm and $\mathbf{p}_{i}[σ]$ is the $n$-dimensional vector $\{p_{ij}\cdot \mathbf{1}[σ(j)=i]\}_{j\in [n]}$. Our goal is to minimize the generalized makespan $ϕ(\mathsf{load}(σ))$, where $ϕ:\mathbb{R}^m\rightarrow\mathbb{R}_{\geq0}$ is another symmetric monotone norm and $\mathsf{load}(σ)$ is the $m$-dimensional machine load vector. This problem significantly generalizes many classic optimization problems, e.g., makespan minimization, set cover, minimum-norm load-balancing, etc. We obtain a polynomial time randomized algorithm that achieves an approximation factor of $O(\log n)$, matching the lower bound of set cover up to constant factor. We achieve this by rounding a novel configuration LP relaxation with exponential number of variables. To approximately solve the configuration LP, we design an approximate separation oracle for its dual program. In particular, the separation oracle can be reduced to the norm minimization with a linear constraint (NormLin) problem and we devise a polynomial time approximation scheme (PTAS) for it, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源