论文标题
线性和二次晶格上高几何多项式序列的离散正交性
Discrete orthogonality of hypergeometric polynomial sequences on linear and quadratic lattices
论文作者
论文摘要
我们提出了一种获得与线性和二次晶格相关的权重函数的方法,该函数相对于ASKEY方案中正交多项式序列的准定义矩功能产生离散正交性,除Jacobi,Jacobi,Bessel,Bessel,Laguerre,Laguerre和Hermite Polynomials外。
We present a method to obtain weight functions associated with linear and quadratic lattices that yield discrete orthogonality with respect to a quasi-definite moment functional of the orthogonal polynomial sequences in the Askey scheme, with the exception of the Jacobi, Bessel, Laguerre, and Hermite polynomials.