论文标题

通过数据压缩的记忆重播,以持续学习

Memory Replay with Data Compression for Continual Learning

论文作者

Wang, Liyuan, Zhang, Xingxing, Yang, Kuo, Yu, Longhui, Li, Chongxuan, Hong, Lanqing, Zhang, Shifeng, Li, Zhenguo, Zhong, Yi, Zhu, Jun

论文摘要

持续学习需要克服灾难性的忘记过去。代表性旧培训样本的记忆重播已显示为有效的解决方案,并实现了最先进的(SOTA)性能。但是,现有工作主要建立在一个小的内存缓冲区上,该存储器包含一些原始数据,该数据无法完全表征旧数据分布。在这项工作中,我们建议使用数据压缩(MRDC)进行内存重播,以减少旧训练样本的存储成本,从而增加可以存储在存储器缓冲区中的数量。观察到压缩数据的质量和数量之间的权衡对于记忆重播的功效高度不利时,我们提出了一种基于确定点过程(DPP)的新方法,以有效地确定当前交易的培训样品的适当压缩质量。这样,使用具有正确选择的质量的幼稚数据压缩算法可以通过在有限的存储空间中保存更多的压缩数据,从而在很大程度上可以增强最近的强基础。我们在课堂学习学习的几个基准和对物体检测的现实情况下进行了自主驾驶的现实情况,对此进行了广泛的验证。

Continual learning needs to overcome catastrophic forgetting of the past. Memory replay of representative old training samples has been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance. However, existing work is mainly built on a small memory buffer containing a few original data, which cannot fully characterize the old data distribution. In this work, we propose memory replay with data compression (MRDC) to reduce the storage cost of old training samples and thus increase their amount that can be stored in the memory buffer. Observing that the trade-off between the quality and quantity of compressed data is highly nontrivial for the efficacy of memory replay, we propose a novel method based on determinantal point processes (DPPs) to efficiently determine an appropriate compression quality for currently-arrived training samples. In this way, using a naive data compression algorithm with a properly selected quality can largely boost recent strong baselines by saving more compressed data in a limited storage space. We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源