论文标题
在图形光谱域中探索魔鬼,以进行3D点云攻击
Exploring the Devil in Graph Spectral Domain for 3D Point Cloud Attacks
论文作者
论文摘要
随着深度传感器的成熟度,点云在各种应用中受到了越来越多的关注,例如自动驾驶,机器人技术,监视等,而深点云学习模型已证明很容易受到对抗性攻击的影响。现有的攻击方法通常会添加/删除点或对点云执行点扰动,以在数据空间中生成对抗性示例,这可能会忽略点云的几何特征。取而代之的是,我们从新的角度提出了点云攻击 - 图形频谱域攻击(GSDA),旨在在图谱频谱域中扰动变换系数,该系数与改变某些几何结构相对应。特别是,我们自然地代表图表上的点云,并通过图形傅立叶变换(GFT)自适应地将点的坐标转换为图形光谱域,以进行紧凑的表示。然后,我们分析了不同光谱带对点云的几何结构的影响,基于我们建议以能量约束损耗函数指导的可学习方式扰动GFT系数。最后,通过将扰动的频谱表示通过逆GFT(IGFT)转换回数据域来生成对抗点云。实验结果证明了拟议的GSDA在各种防御策略下的不可识别和攻击成功率方面的有效性。该代码可在https://github.com/woodwindhu/gsda上找到。
With the maturity of depth sensors, point clouds have received increasing attention in various applications such as autonomous driving, robotics, surveillance, etc., while deep point cloud learning models have shown to be vulnerable to adversarial attacks. Existing attack methods generally add/delete points or perform point-wise perturbation over point clouds to generate adversarial examples in the data space, which may neglect the geometric characteristics of point clouds. Instead, we propose point cloud attacks from a new perspective -- Graph Spectral Domain Attack (GSDA), aiming to perturb transform coefficients in the graph spectral domain that corresponds to varying certain geometric structure. In particular, we naturally represent a point cloud over a graph, and adaptively transform the coordinates of points into the graph spectral domain via graph Fourier transform (GFT) for compact representation. We then analyze the influence of different spectral bands on the geometric structure of the point cloud, based on which we propose to perturb the GFT coefficients in a learnable manner guided by an energy constraint loss function. Finally, the adversarial point cloud is generated by transforming the perturbed spectral representation back to the data domain via the inverse GFT (IGFT). Experimental results demonstrate the effectiveness of the proposed GSDA in terms of both imperceptibility and attack success rates under a variety of defense strategies. The code is available at https://github.com/WoodwindHu/GSDA.