论文标题
图和谐波图,重新审视
Diagrams and harmonic maps, revisited
论文作者
论文摘要
我们将谐波图的许多已知结果从2个球员扩展到硕士,并从任意riemann表面从有限的uniton数字的谐波图到谐波图。我们的方法依赖于由F.E.〜burtall的图和与此类谐波图相关的第二作者产生的新疗法周期的新理论。这些属性源于作者A.应用包括在恒定曲率的最小表面和有限型谐波图的恒定结果上的新分类结果。
We extend many known results for harmonic maps from the 2-sphere into a Grassmannian to harmonic maps of finite uniton number from an arbitrary Riemann surface. Our method relies on a new theory of nilpotent cycles arising from the diagrams of F.E.~Burstall and the second author associated to such harmonic maps; these properties arise from a criterion for finiteness of the uniton number found recently by the authors with A.~Aleman. Applications include a new classification result on minimal surfaces of constant curvature and a constancy result for finite type harmonic maps.