论文标题
单宽宽度:统一树宽度,路径宽度和分支宽度
Monoidal Width: Unifying Tree Width, Path Width and Branch Width
论文作者
论文摘要
我们引入单宽宽度,以此来衡量在单体类别中分解形态的难度。对于图,我们表明单宽宽度和两个变体捕获了现有的概念,即分支宽度,树宽度和路径宽度。我们提出单宽宽度:(i)是一个有前途的概念,尽管捕获已知的措施,但可以在其他设置中进行实例化,避免使用临时域特异性定义,并且(ii)伴随着使用单型类别的语言进行一般的,正式的代数分解概念。
We introduce monoidal width as a measure of the difficulty of decomposing morphisms in monoidal categories. For graphs, we show that monoidal width and two variations capture existing notions, namely branch width, tree width and path width. We propose that monoidal width: (i) is a promising concept that, while capturing known measures, can similarly be instantiated in other settings, avoiding the need for ad-hoc domain-specific definitions and (ii) comes with a general, formal algebraic notion of decomposition using the language of monoidal categories.