论文标题
使用机器学习测量红色巨星中的频率和周期分离
Measuring frequency and period separations in red-giant stars using machine learning
论文作者
论文摘要
Asterosology用于推断恒星的内部物理学。 \ textIt {kepler}和苔丝空间任务提供了大量的红色巨型光曲线数据集,可用于星际震荡分析。预计这些数据集将随着未来的任务(例如\ textit {plato}}而显着增长,因此需要有效的方法来快速分析这些数据。在这里,我们描述了一种机器学习算法,该算法从原始振荡光谱中标识了红色巨人,并捕获了\ textit {p}和\ textit {混合}模式参数来自红色巨型功率光谱。我们报告了大频率分离($Δν$),最大振幅($ν_{max} $)的算法推断以及恒星集合的周期分离($Δπ$)。此外,我们发现了151,000 \ textit {kepler}的$ \ sim 25 $ 25新的可能的红色巨人,该方法通过该方法分析了长期恒星振荡光谱,其中四个是二进制候选者,这些二进制候选者似乎拥有红色巨头对应物。为了验证该方法的结果,我们选择了$ \ sim $ 3,000 \ textit {kepler}星星,在从子巨头到红色团块的各种进化阶段,并比较$Δν$,$Δπ$,以及$Δπ$,以及$Δπ$,以及$Δ{max {max} $的推论与使用其他技术的估计。机器学习算法的功率在于其速度:它能够在现代计算机上(Intel Xeon Platinum 8280 CPU的单一核心)中从1,000个光谱中精确提取地震参数。
Asteroseismology is used to infer the interior physics of stars. The \textit{Kepler} and TESS space missions have provided a vast data set of red-giant light curves, which may be used for asteroseismic analysis. These data sets are expected to significantly grow with future missions such as \textit{PLATO}, and efficient methods are therefore required to analyze these data rapidly. Here, we describe a machine learning algorithm that identifies red giants from the raw oscillation spectra and captures \textit{p} and \textit{mixed} mode parameters from the red-giant power spectra. We report algorithmic inferences for large frequency separation ($Δν$), frequency at maximum amplitude ($ν_{max}$), and period separation ($ΔΠ$) for an ensemble of stars. In addition, we have discovered $\sim$25 new probable red giants among 151,000 \textit{Kepler} long-cadence stellar-oscillation spectra analyzed by the method, among which four are binary candidates which appear to possess red-giant counterparts. To validate the results of this method, we selected $\sim$ 3,000 \textit{Kepler} stars, at various evolutionary stages ranging from subgiants to red clumps, and compare inferences of $Δν$, $ΔΠ$, and $ν_{max}$ with estimates obtained using other techniques. The power of the machine-learning algorithm lies in its speed: it is able to accurately extract seismic parameters from 1,000 spectra in $\sim$5 seconds on a modern computer (single core of the Intel Xeon Platinum 8280 CPU).