论文标题

扁平托里(Flat Tori

Flat tori with large Laplacian eigenvalues in dimensions up to eight

论文作者

Kao, Chiu-Yen, Osting, Braxton, Turner, Jackson C.

论文摘要

我们考虑了最大化$ k $ -th laplacian特征值的优化问题,$λ_{k} $,固定音量的flat $ d $ d $ d $二维摩托车。对于$ k = 1 $,此问题等同于最密集的晶格球形包装问题。对于较大的$ k $,这相当于找到NP硬的问题,即找到最长$ k $的$ d $数(双)晶格 - 最短的晶格矢量。由于广泛的计算,对于$ d \ leq 8 $,我们获得了一系列flat tori,$ t_ {k,d} $,每个卷。对于每个(有限)$ k $,$ k $ -th特征值超过了($ k \ to \ ismptotic $渐近)Weyl's Law的值,其因素在1.54到2.01之间,具体取决于维度。平稳性条件被得出并以$ t_ {k,d} $进行数值验证,我们将托里的变性描述为$ k \ to \ infty $。

We consider the optimization problem of maximizing the $k$-th Laplacian eigenvalue, $λ_{k}$, over flat $d$-dimensional tori of fixed volume. For $k=1$, this problem is equivalent to the densest lattice sphere packing problem. For larger $k$, this is equivalent to the NP-hard problem of finding the $d$-dimensional (dual) lattice with longest $k$-th shortest lattice vector. As a result of extensive computations, for $d \leq 8$, we obtain a sequence of flat tori, $T_{k,d}$, each of volume one, such that the $k$-th Laplacian eigenvalue of $T_{k,d}$ is very large; for each (finite) $k$ the $k$-th eigenvalue exceeds the value in (the $k\to \infty$ asymptotic) Weyl's law by a factor between 1.54 and 2.01, depending on the dimension. Stationarity conditions are derived and numerically verified for $T_{k,d}$ and we describe the degeneration of the tori as $k \to \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源