论文标题
交响曲:编写机器学习的交互式接口
Symphony: Composing Interactive Interfaces for Machine Learning
论文作者
论文摘要
机器学习的接口(ML),有关模型或数据的信息和可视化可以帮助从业者建立强大而负责的ML系统。尽管有好处,但最近对ML团队的研究以及我们对从业人员的访谈(n = 9)表明,实际上,ML接口的采用有限。尽管现有的ML接口对于特定任务有效,但并非跨职能团队中的多个利益相关者将它们设计为重复使用,探索和共享。为了启用不同ML从业人员之间的分析和交流,我们设计和实施了交响曲,这是一个框架,该框架与特定于任务的,数据驱动的组件构成交互式ML接口,这些组件可在计算笔记本和Web仪表板等平台上使用。我们通过参与式设计会议开发了交响曲(n = 31),并讨论了我们从部署交响曲到Apple的3个生产ML项目的发现。交响曲帮助ML从业者发现了以前未知的问题,例如模型中的数据重复和盲点,同时使他们能够与其他利益相关者共享见解。
Interfaces for machine learning (ML), information and visualizations about models or data, can help practitioners build robust and responsible ML systems. Despite their benefits, recent studies of ML teams and our interviews with practitioners (n=9) showed that ML interfaces have limited adoption in practice. While existing ML interfaces are effective for specific tasks, they are not designed to be reused, explored, and shared by multiple stakeholders in cross-functional teams. To enable analysis and communication between different ML practitioners, we designed and implemented Symphony, a framework for composing interactive ML interfaces with task-specific, data-driven components that can be used across platforms such as computational notebooks and web dashboards. We developed Symphony through participatory design sessions with 10 teams (n=31), and discuss our findings from deploying Symphony to 3 production ML projects at Apple. Symphony helped ML practitioners discover previously unknown issues like data duplicates and blind spots in models while enabling them to share insights with other stakeholders.