论文标题

一种用于机器人定位系统的基于FPGA的节能且可运行的可配置的加速器

An Energy-Efficient and Runtime-Reconfigurable FPGA-Based Accelerator for Robotic Localization Systems

论文作者

Liu, Qiang, Wan, Zishen, Yu, Bo, Liu, Weizhuang, Liu, Shaoshan, Raychowdhury, Arijit

论文摘要

同时定位和映射(SLAM)估计了代理的轨迹和构造图,并且本地化是所有计算机的自主机器中的基本内核,从无人机,AR,VR到自动驾驶汽车。在这项工作中,我们提出了一种用于机器人定位的基于FPGA的能源效率和运行时可配置的加速器。我们利用特定的数据局部性,稀疏性,重复使用和并行性,并在最新的情况下实现> 5倍的性能改善。尤其是,根据环境,我们的设计在运行时可以重新配置,以节省功率,同时持续准确性和性能。

Simultaneous Localization and Mapping (SLAM) estimates agents' trajectories and constructs maps, and localization is a fundamental kernel in autonomous machines at all computing scales, from drones, AR, VR to self-driving cars. In this work, we present an energy-efficient and runtime-reconfigurable FPGA-based accelerator for robotic localization. We exploit SLAM-specific data locality, sparsity, reuse, and parallelism, and achieve >5x performance improvement over the state-of-the-art. Especially, our design is reconfigurable at runtime according to the environment to save power while sustaining accuracy and performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源