论文标题

响应转移范式以量化人工智能的信任

The Response Shift Paradigm to Quantify Human Trust in AI Recommendations

论文作者

Shafti, Ali, Derks, Victoria, Kay, Hannah, Faisal, A. Aldo

论文摘要

解释性,解释性及其影响人类对AI系统的信任程度最终是人类认知问题的问题,就像机器学习一样多,但是AI建议的有效性和最终用户提供的信任通常不会定量评估。我们开发并验证了通用人类互动范式,该范式量化了AI建议对人类决策的影响。在我们的范式中,我们与人类用户面对定量预测任务:要求他们进行第一回应,然后才与AI的建议(和说明)面对面,然后要求人类用户提供最新的最终响应。最终反应和第一回应之间的差异构成了人类决策的转变或摇摆,我们将其用作AI的建议对人类的建议,代表了他们对AI的信任。我们使用亚马逊机械土耳其人对数百名用户评估了这种范式,并使用多支分支的实验与使用良好/差的AI系统的用户相遇,具有良好,差或没有解释性。我们的原理范式允许人们定量地比较XAI/IAI的快速增长的方法,从而对其对最终用户的影响进行比较,并打开了(机器)学习信任的可能性。

Explainability, interpretability and how much they affect human trust in AI systems are ultimately problems of human cognition as much as machine learning, yet the effectiveness of AI recommendations and the trust afforded by end-users are typically not evaluated quantitatively. We developed and validated a general purpose Human-AI interaction paradigm which quantifies the impact of AI recommendations on human decisions. In our paradigm we confronted human users with quantitative prediction tasks: asking them for a first response, before confronting them with an AI's recommendations (and explanation), and then asking the human user to provide an updated final response. The difference between final and first responses constitutes the shift or sway in the human decision which we use as metric of the AI's recommendation impact on the human, representing the trust they place on the AI. We evaluated this paradigm on hundreds of users through Amazon Mechanical Turk using a multi-branched experiment confronting users with good/poor AI systems that had good, poor or no explainability. Our proof-of-principle paradigm allows one to quantitatively compare the rapidly growing set of XAI/IAI approaches in terms of their effect on the end-user and opens up the possibility of (machine) learning trust.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源