论文标题

Murasugi总和和极端结浮子同源

Murasugi sum and extremal knot Floer homology

论文作者

Cheng, Zhechi, Hedden, Matthew, Sarkar, Sucharit

论文摘要

本文的目的是研究Murasugi总和下的结Floer同源性的行为。我们在两个链接的Murasugi和Murasugi的极端结式同源性和两个汇总的极端结式同源组的张量产品之间建立了NI同构的分级版本。我们进一步证明,当$τ= g = g $为Murasugi Sum($τ$和$τ$和$ g $适当定义用于多组件链接)时,每个总求的$τ= g $。提出了一些应用程序。

The aim of this paper is to study the behavior of knot Floer homology under Murasugi sum. We establish a graded version of Ni's isomorphism between the extremal knot Floer homology of Murasugi sum of two links and the tensor product of the extremal knot Floer homology groups of the two summands. We further prove that $τ=g$ for each summand if and only if $τ=g$ holds for the Murasugi sum (with $τ$ and $g$ defined appropriately for multi-component links). Some applications are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源