论文标题
共同结合的剪切运算符和拓扑递归中的操作员
Cut-and-join operators in cohomological field theory and topological recursion
论文作者
论文摘要
我们为Chekhov-Eynard-orderin拓扑递归的分区函数构建了一个立方切割操作员描述,用于局部光谱曲线,并具有简单的分支点。特别是,此类包含所有半简单同胞田地理论的分区函数。剪切描述导致拓扑递归的代数版本。对于同一分区函数,我们还得出了n个virasoro约束的n家族,并证明这些约束是由变形的尺寸约束补充的,这意味着剪切和加入描述。
We construct a cubic cut-and-join operator description for the partition function of the Chekhov-Eynard-Orantin topological recursion for a local spectral curve with simple ramification points. In particular, this class contains partition functions of all semi-simple cohomological field theories. The cut-and-join description leads to an algebraic version of topological recursion. For the same partition functions we also derive N families of the Virasoro constraints and prove that these constraints, supplemented by a deformed dimension constraint, imply the cut-and-join description.