论文标题
精确的双态性和时间伪结晶的驱动效费晶格
Exact bistability and time pseudo-crystallization of driven-dissipative fermionic lattices
论文作者
论文摘要
量子光学系统中的双重性仍然是一个激烈争议的公开问题,超出了平均场近似值。量子波动是对所使用的平均场近似值的有限尺寸校正,因为完整的精确解决方案是无法实现的。通常,量子波动破坏了平均场水平上存在的双重性。在这里,通过识别和使用精确的调制半局部动力学对称性,在驱动 - 疾病效应的费米子链的某些量子光学模型中,我们完全证明了精确的量子波动。令人惊讶的是,量子波动本身并没有破坏双重性,而是表现出双重性,即使我们系统的平均场水平不存在。此外,研究的模型获得了其他热力学动力学对称性,这意味着量子波动中持续的周期性振荡,构成边界时间晶体的伪变化。从物理上讲,这些新兴的操作员对应于有限的频率和有限的摩托车半局部金石模式。因此,我们的工作最大程度地为我们知识提供了一个可证明的双态量子光学系统的第一个例子。
The existence of bistability in quantum optical systems remains a intensely debated open question beyond the mean-field approximation. Quantum fluctuations are finite-size corrections to the mean-field approximation used because the full exact solution is unobtainable. Usually, quantum fluctuations destroy the bistability present on the mean-field level. Here, by identifying and using exact modulated semi-local dynamical symmetries in a certain quantum optical models of driven-dissipative fermionic chains we exactly prove bistability in precisely the quantum fluctuations. Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability, even though it is absent on the mean-field level for our systems. Moreover, the models studied acquire additional thermodynamic dynamical symmetries that imply persistent periodic oscillations in the quantum fluctuations, constituting pseudo-variants of boundary time crystals. Physically, these emergent operators correspond to finite-frequency and finite-momentum semi-local Goldstone modes. Our work therefore provides to the best of our knowledge the first example of a provably bistable quantum optical system.