论文标题
神经文本分类的层次解释
Hierarchical Interpretation of Neural Text Classification
论文作者
论文摘要
近年来,人们对开发自然语言处理(NLP)中可解释模型的利益越来越多。大多数现有模型旨在识别输入特征,例如对于模型预测而言重要的单词或短语。然而,在NLP中开发的神经模型通常以层次结构的方式构成单词语义,文本分类需要层次建模来汇总本地信息,以便处理主题和标签更有效地变化。因此,单词或短语的解释不能忠实地解释文本分类中的模型决策。本文提出了一种新型的层次解释性神经文本分类器,称为提示,该分类器可以自动以层次方式以标记相关主题的形式生成模型预测的解释。模型解释不再处于单词级别,而是基于主题作为基本语义单元。评论数据集和新闻数据集的实验结果表明,我们所提出的方法与现有最新的文本分类器相当地达到文本分类结果,并比其他可解释的神经文本分类器更忠实于模型预测和更好地理解人类的解释。
Recent years have witnessed increasing interests in developing interpretable models in Natural Language Processing (NLP). Most existing models aim at identifying input features such as words or phrases important for model predictions. Neural models developed in NLP however often compose word semantics in a hierarchical manner and text classification requires hierarchical modelling to aggregate local information in order to deal with topic and label shifts more effectively. As such, interpretation by words or phrases only cannot faithfully explain model decisions in text classification. This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions in the form of label-associated topics in a hierarchical manner. Model interpretation is no longer at the word level, but built on topics as the basic semantic unit. Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers, and generates interpretations more faithful to model predictions and better understood by humans than other interpretable neural text classifiers.