论文标题

自适应暹罗跟踪的生成目标更新

Generative Target Update for Adaptive Siamese Tracking

论文作者

Kiran, Madhu, Nguyen-Meidine, Le Thanh, Sahay, Rajat, Cruz, Rafael Menelau Oliveira E, Blais-Morin, Louis-Antoine, Granger, Eric

论文摘要

暹罗跟踪器执行与模板(即目标模型)的相似性匹配,以在搜索区域中递归将对象定位。文献中已经提出了几种策略,以根据跟踪器输出更新模板,通常从当前帧中的目标搜索区域提取,从而减轻目标漂移的效果。但是,这可能会导致模板损坏,从而限制了模板更新策略的潜在好处。 本文提出了一种用于暹罗跟踪器的模型适应方法,该方法使用生成模型从几个以前的几个帧的对象搜索区域产生合成模板,而不是直接使用跟踪器输出。由于搜索区域包括目标,因此搜索区域的注意力用于鲁棒模型适应。特别是,我们的方法依赖于通过对抗性学习训练的自动编码器,以检测目标对象外观的变化并使用一组从先前帧的跟踪器输出本地定位的目标模板来预测未来的目标模板。为了防止在更新过程中进行模板损坏,提出的跟踪器还使用生成模型执行更改检测,以暂停更新,直到跟踪器稳定为止,并且稳健的匹配可以通过动态模板融合来恢复。 对Dot-16,Dot-17,OTB-50和OTB-100数据集进行的广泛实验强调了我们方法的有效性,以及其关键组件的影响。结果表明,我们所提出的方法可以胜过最先进的跟踪器,并且其整体鲁棒性允许在故障之前更长的时间进行跟踪。

Siamese trackers perform similarity matching with templates (i.e., target models) to recursively localize objects within a search region. Several strategies have been proposed in the literature to update a template based on the tracker output, typically extracted from the target search region in the current frame, and thereby mitigate the effects of target drift. However, this may lead to corrupted templates, limiting the potential benefits of a template update strategy. This paper proposes a model adaptation method for Siamese trackers that uses a generative model to produce a synthetic template from the object search regions of several previous frames, rather than directly using the tracker output. Since the search region encompasses the target, attention from the search region is used for robust model adaptation. In particular, our approach relies on an auto-encoder trained through adversarial learning to detect changes in a target object's appearance and predict a future target template, using a set of target templates localized from tracker outputs at previous frames. To prevent template corruption during the update, the proposed tracker also performs change detection using the generative model to suspend updates until the tracker stabilizes, and robust matching can resume through dynamic template fusion. Extensive experiments conducted on VOT-16, VOT-17, OTB-50, and OTB-100 datasets highlight the effectiveness of our method, along with the impact of its key components. Results indicate that our proposed approach can outperform state-of-art trackers, and its overall robustness allows tracking for a longer time before failure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源