论文标题
在广义贝叶斯推理中削减反馈和模块化分析
Cutting feedback and modularized analyses in generalized Bayesian inference
论文作者
论文摘要
这项工作考虑了贝叶斯的推断,该推论是在不指定的复杂统计模型中,由简单的子模型组成,称为模块,这些模块是耦合在一起的。在将来自不同数据源的信息组合到每个数据源的模块时,通常会出现这种``多模块化模型''。当某些模块被错误指定时,贝叶斯推论在错误指定下的挑战有时可以通过`````'''''''cuttabback''方法来解决,从而通过``削减''方法来修改传统的贝叶赛亚份额,从而通过限制了不利于不利于差异的方式。在这里,我们研究了在广义后分布的背景下进行的切割反馈方法,后者是由任意损失函数构建的,并呈现了有关其行为的新发现。我们做出三个主要贡献。首先,我们描述了如何在广义贝叶斯设置中定义切割反馈方法,并讨论了彼此和先验的不同模块的损失函数的适当缩放。其次,我们在给定模块的参数的其他模块的参数方面得出了关于后部的大样本行为的新结果。这正式证明了条件拉普拉斯近似值的使用是合理的,与从关节后部的拉普拉斯近似的条件分布相比,有条件后验分布的近似值更好。我们的最终贡献利用了我们的第二个贡献的大型样本近似值,以提供方便的诊断,以了解推断模块耦合的敏感性,并实施一种新的半模块化后验方法来进行强大的贝叶斯模块化推断。该方法的有用性在有关剪切模型推断的文献中的几个基准示例中进行了说明。
This work considers Bayesian inference under misspecification for complex statistical models comprised of simpler submodels, referred to as modules, that are coupled together. Such ``multi-modular" models often arise when combining information from different data sources, where there is a module for each data source. When some of the modules are misspecified, the challenges of Bayesian inference under misspecification can sometimes be addressed by using ``cutting feedback" methods, which modify conventional Bayesian inference by limiting the influence of unreliable modules. Here we investigate cutting feedback methods in the context of generalized posterior distributions, which are built from arbitrary loss functions, and present novel findings on their behaviour. We make three main contributions. First, we describe how cutting feedback methods can be defined in the generalized Bayes setting, and discuss the appropriate scaling of the loss functions for different modules to each other and the prior. Second, we derive a novel result about the large sample behaviour of the posterior for a given module's parameters conditional on the parameters of other modules. This formally justifies the use of conditional Laplace approximations, which provide better approximations of conditional posterior distributions compared to conditional distributions from a Laplace approximation of the joint posterior. Our final contribution leverages the large sample approximations of our second contribution to provide convenient diagnostics for understanding the sensitivity of inference to the coupling of the modules, and to implement a new semi-modular posterior approach for conducting robust Bayesian modular inference. The usefulness of the methodology is illustrated in several benchmark examples from the literature on cut model inference.