论文标题
使用平行计算机解决多相流的沟通效率算法用于求解压力泊松方程
Communication-Efficient Algorithms for Solving Pressure Poisson Equation for Multiphase Flows using Parallel Computers
论文作者
论文摘要
使用域分解对平行计算机上的部分微分方程的数值解通常需要处理器之间的同步和通信。这些操作在时间和能量方面通常具有重要的开销。在本文中,我们提出了沟通高效的并行算法来解决减轻该开销的偏微分方程。首先,我们描述了一种异步算法,该算法消除了同步的要求,并以分布式方式检查终止,同时保持必要时重新启动迭代的规定。然后,我们以异步算法的形式构建,以提出一种事件触发的通信算法,该算法仅在某些迭代时将边界值传达给相邻处理器,从而减少了消息的数量,同时维持相似的解决方案精度。我们在3-D中不可压缩的多相流而产生的压力泊松方程的连续过度删除求解器上演示了我们的算法,并表明我们的算法提高了时间和能量效率。
Numerical solution of partial differential equations on parallel computers using domain decomposition usually requires synchronization and communication among the processors. These operations often have a significant overhead in terms of time and energy. In this paper, we propose communication-efficient parallel algorithms for solving partial differential equations that alleviate this overhead. First, we describe an asynchronous algorithm that removes the requirement of synchronization and checks for termination in a distributed fashion while maintaining the provision to restart iterations if necessary. Then, we build on the asynchronous algorithm to propose an event-triggered communication algorithm that communicates the boundary values to neighboring processors only at certain iterations, thereby reducing the number of messages while maintaining similar accuracy of solution. We demonstrate our algorithms on a successive over-relaxation solver for the Pressure Poisson equation arising from variable density incompressible multiphase flows in 3-D and show that our algorithms improve time and energy efficiency.