论文标题
DeepSketch:一种基于机器学习的新的参考搜索技术,用于DEDELICATIC DELTA压缩
DeepSketch: A New Machine Learning-Based Reference Search Technique for Post-Deduplication Delta Compression
论文作者
论文摘要
作为将数据中心的管理成本降至最低的有效解决方案,存储系统的数据减少越来越重要。为了最大程度地提高数据降低效率,现有的二次填充后增压技术执行Delta压缩以及传统的数据删除和无损压缩。不幸的是,我们观察到,由于识别相似的数据块的准确性有限,因此现有技术的数据还原比明显低于最佳数据。 在本文中,我们提出了DeepSketch,这是一种新的参考搜索技术,用于用于降低后DELTA压缩,该技术利用学习对准方法来实现更高的准确性,以参考搜索DELTA压缩,从而提高了数据减少数据效率。 DeepSketch使用深层神经网络来提取数据块的草图,即创建可以保留与其他块相似性的块的近似数据签名。我们使用11个现实世界的工作负载进行评估表明,与最先进的Deduplication Duplication Duplication Duplication Dulta-Compression技术相比,DeepSketch将数据还原比提高了33%(平均为21%)。
Data reduction in storage systems is becoming increasingly important as an effective solution to minimize the management cost of a data center. To maximize data-reduction efficiency, existing post-deduplication delta-compression techniques perform delta compression along with traditional data deduplication and lossless compression. Unfortunately, we observe that existing techniques achieve significantly lower data-reduction ratios than the optimal due to their limited accuracy in identifying similar data blocks. In this paper, we propose DeepSketch, a new reference search technique for post-deduplication delta compression that leverages the learning-to-hash method to achieve higher accuracy in reference search for delta compression, thereby improving data-reduction efficiency. DeepSketch uses a deep neural network to extract a data block's sketch, i.e., to create an approximate data signature of the block that can preserve similarity with other blocks. Our evaluation using eleven real-world workloads shows that DeepSketch improves the data-reduction ratio by up to 33% (21% on average) over a state-of-the-art post-deduplication delta-compression technique.