论文标题

使用凸探针的脉冲回声速度成像

Pulse-echo speed-of-sound imaging using convex probes

论文作者

Jaeger, Michael, Stähli, Patrick, Martiartu, Naiara Korta, Yolgunlu, Parisa Salemi, Frappart, Thomas, Fraschini, Christophe, Frenz, Martin

论文摘要

在Echo模式下计算的超声断层扫描(可爱)是一种新的超声(美国)医学成像方式,有望根据组织的声音速度(SOS)诊断各种类型的疾病。它是针对传统的脉搏回波使用手持探针开发的,因此可以在美国最先进的美国系统中实现。一种有希望的应用是在脂肪肝病中定量肝脏脂肪分数。到目前为止,使用线性阵列探针证明了可爱,其中成像深度与光圈大小相当。但是,对于肝脏成像,首选凸探针,因为它们提供了更大的穿透深度和更宽的视角,从而捕获了大面积的肝脏。考虑到肝脏成像的目的,我们将可爱适应凸探针,特别着眼于讨论利用凸几何形状以使我们的实施计算效率的策略。然后,我们在腹部成像幻影中证明,尽管与线性阵列相比,相对于图像区域而言,使用凸探针的精确定量SO是可行的。肝脏成像的初步体内结果证实了这一结果,但也表明,实际肝脏中的深度定量成像可能更具挑战性,这可能是由于与幻影相比组织的复杂性增加。

Computed ultrasound tomography in echo mode (CUTE) is a new ultrasound (US)-based medical imaging modality with promise for diagnosing various types of disease based on the tissue's speed of sound (SoS). It is developed for conventional pulse-echo US using handheld probes and can thus be implemented in state-of-the-art medical US systems. One promising application is the quantification of the liver fat fraction in fatty liver disease. So far, CUTE was demonstrated using linear array probes where the imaging depth is comparable to the aperture size. For liver imaging, however, convex probes are preferred since they provide a larger penetration depth and a wider view angle allowing to capture a large area of the liver. With the goal of liver imaging in mind, we adapt CUTE to convex probes, with a special focus on discussing strategies that make use of the convex geometry in order to make our implementation computationally efficient. We then demonstrate in an abdominal imaging phantom that accurate quantitative SoS using convex probes is feasible, in spite of the smaller aperture size in relation to the image area compared to linear arrays. A preliminary in vivo result of liver imaging confirms this outcome, but also indicates that deep quantitative imaging in the real liver can be more challenging, probably due to the increased complexity of the tissue compared to phantoms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源