论文标题

XX旋转熵$ 1/2 $链条在任意温度下随机分区

Entanglement entropy of XX spin $1/2$ chain with random partitioning at arbitrary temperature

论文作者

Pouranvari, Mohammad

论文摘要

我们使用随机分区研究随机温度$ t $的随机XX旋转$ 1/2 $链的纠缠属性,其中选择了大小变化子系统的位点,以均匀的概率$ P $随机选择,然后采取平均值比子系统的平均值。我们在分析和数值上使用真实空间重新归一化组的近似方法表明,在XX $ l $的XX自旋链中的随机分区纠缠熵的行为像EE $(t,p)= a(t,p)= a(t,p)l $在任意温度$ t $的情况下,使用均匀的概率$ p $,即IT obeys obeys boluge。我们证明$ a(t,p)= \ ln(2)\ langle p_s + p_ {整个系统中分别分别在整个系统中的Triplet $ _ {\ uparrow \ downarrow} $。我们还研究了因素前$ a(t,p)$的温度依赖性。我们表明,通过随机分区的EE揭示了整个系统中的短期和远程相关性。

We study the entanglement properties of random XX spin $1/2$ chains at an arbitrary temperature $T$ using random partitioning, where sites of a size-varying subsystem are chosen randomly with a uniform probability $p$, and then an average over subsystem possibilities is taken. We show analytically and numerically, using the approximate method of real space renormalization group, that random partitioning entanglement entropy for the XX spin chain of size $L$ behaves like EE$(T,p) = a(T,p) L$ at an arbitrary temperature $T$ with a uniform probability $p$, i.e., it obeys volume law. We demonstrate that $a(T,p) = \ln(2) \langle P_s + P_{t_{\uparrow\downarrow}} \rangle p(1-p)$, where $P_s$ and $P_{t_{\uparrow\downarrow}}$ are the average probabilities of having singlet and triplet$_{\uparrow\downarrow}$ in the entire system, respectively. We also study the temperature dependence of pre-factor $a(T,p)$. We show that EE with random partitioning reveals both short- and long-range correlations in the entire system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源