论文标题
具有视觉远见的运输者,用于解决看不见的重排任务
Transporters with Visual Foresight for Solving Unseen Rearrangement Tasks
论文作者
论文摘要
重新安排任务已被确定为智能机器人操纵的关键挑战,但是很少有方法可以精确构造看不见的结构。我们为挑选重排操作提出了视觉上的远见模型,该模型能够有效地学习。此外,我们开发了一个多模式的动作提案模块,该模块建立在目标条件转运者网络上,这是一种最新的模仿学习方法。我们基于图像的任务计划方法,具有视觉远见的转运蛋白,只能从少数数据中学习,并以零拍的方式推广到多个看不见的任务。 TVF能够提高对模拟和真实机器人实验中未见任务的最先进模仿学习方法的性能。特别是,在模拟实验中,看不见的任务的平均成功率从55.4%提高到78.5%,而实际机器人实验中的平均成功率仅进行了数十次专家示范时,在实际机器人实验中的平均成功率从30%提高到63.3%。视频和代码可在我们的项目网站上找到:https://chirikjianlab.github.io/tvf/
Rearrangement tasks have been identified as a crucial challenge for intelligent robotic manipulation, but few methods allow for precise construction of unseen structures. We propose a visual foresight model for pick-and-place rearrangement manipulation which is able to learn efficiently. In addition, we develop a multi-modal action proposal module which builds on the Goal-Conditioned Transporter Network, a state-of-the-art imitation learning method. Our image-based task planning method, Transporters with Visual Foresight, is able to learn from only a handful of data and generalize to multiple unseen tasks in a zero-shot manner. TVF is able to improve the performance of a state-of-the-art imitation learning method on unseen tasks in simulation and real robot experiments. In particular, the average success rate on unseen tasks improves from 55.4% to 78.5% in simulation experiments and from 30% to 63.3% in real robot experiments when given only tens of expert demonstrations. Video and code are available on our project website: https://chirikjianlab.github.io/tvf/