论文标题
张量,拉丁高管和矩形kronecker系数的基本不变性
Fundamental invariants of tensors, Latin hypercubes, and rectangular Kronecker coefficients
论文作者
论文摘要
我们研究了张量的多项式SL不变,主要集中于最小度的基本不变性。特别是,我们证明,Bürgisser和Ikenmeyer先前考虑的拉丁立方体上的某些三维类似物暗示着(广义)Kronecker系数在矩形分区的阳性,因此为基本不风险型的程度序列提供了值的值。
We study polynomial SL-invariants of tensors, mainly focusing on fundamental invariants which are of smallest degrees. In particular, we prove that certain 3-dimensional analogue of the Alon--Tarsi conjecture on Latin cubes considered previously by Bürgisser and Ikenmeyer, implies positivity of (generalized) Kronecker coefficients at rectangular partitions and as a result provides values for degree sequences of fundamental invariants.