论文标题

与Laguerre多项式扩展相关的谐波分析运算符在可变的Lebesgue空间上

Harmonic analysis operators associated with Laguerre polynomial expansions on variable Lebesgue spaces

论文作者

Betancor, Jorge J., Dalmasso, Estefanía, Quijano, Pablo, Scotto, Roberto

论文摘要

在本文中,我们在可测量的功能上提供了足够的条件$ p:(0,\ infty)^n \ rightarrow [1,\ infty)$,以使谐波分析运算符(最大运算符,Riesz Transforms,Littlewood-paley-Paley函数和乘数)与$α$α$ -Laguerre poldynomial Explace相关的多种多样的空间是界限的。 $ l^{p(\ cdot)}((((0,\ infty)^n,μ_α)$,其中$dμ_α(x)= 2^n \ prod_ {j = 1}^n \ frac {x_jj^{2α_j+1} $α=(α_1,\ dots,α_n)\ in [0,\ infty)^n $和$ x =(x_1,\ dots,x_n)\ in(0,\ infty)^n $。

In this paper we give sufficient conditions on a measurable function $p:(0,\infty)^n\rightarrow [1,\infty)$ in order that harmonic analysis operators (maximal operators, Riesz transforms, Littlewood--Paley functions and multipliers) associated with $α$-Laguerre polynomial expansions are bounded on the variable Lebesgue space $L^{p(\cdot)} ((0,\infty)^n, μ_α)$, where $dμ_α(x)=2^n\prod_{j=1}^n \frac{x_j^{2α_j+1} e^{-x_j^2}}{Γ(α_j+1)} dx$, being $α=(α_1, \dots, α_n)\in [0,\infty)^n$ and $x=(x_1,\dots,x_n)\in (0,\infty)^n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源