论文标题
记忆中的弹道沉积:具有新扩展定律的新的表面增长类别
Ballistic deposition with memory: a new universality class of surface growth with a new scaling law
论文作者
论文摘要
在微生物学方面的最新实验研究中,我们提出了对表面生长的经典弹道沉积模型的修改,在该模型中,该地点沉积的记忆在该地点或其邻居中引起更多的沉积。通过研究该模型中表面的统计数据,我们获得了三个独立的关键指数:增长指数$β= 5/4 $,粗糙指数$α= 2 $和新的(尺寸)指数$γ= 1/2 $。该模型需要对family-vicsek缩放进行修改,从而导致动态指数$ z = \ frac {α+γ}β= 2 $。这种修改的缩放率折叠了各种晶格大小的表面宽度与时间曲线。这是以前未观察到的表面生长类别的普遍性类别,可以描述各种自然系统的表面特性。
Motivated by recent experimental studies in microbiology, we suggest a modification of the classic ballistic deposition model of surface growth, where the memory of a deposition at a site induces more depositions at that site or its neighbors. By studying the statistics of surfaces in this model, we obtain three independent critical exponents: the growth exponent $β=5/4$, the roughening exponent $α= 2$, and the new (size) exponent $γ= 1/2$. The model requires a modification to the Family-Vicsek scaling, resulting in the dynamical exponent $z = \frac{α+γ}β = 2$. This modified scaling collapses the surface width vs time curves for various lattice sizes. This is a previously unobserved universality class of surface growth that could describe surface properties of a wide range of natural systems.