论文标题

BREZIS - 高阶椭圆运算符的Kato类型规律性结果

Brezis--Kato Type Regularity Results for Higher Order Elliptic Operators

论文作者

Siemianowski, Jakub

论文摘要

我们证明了BREZIS - 喀托规则性类型的结果,用于高阶非线性椭圆方程的解决方案\ [ l u = g(x,u)\ qquad \ text {in}ω\],带有带有可变系数的椭圆运算符$ l $ $ 2M $ $ $ $ g:carathéodory函数$ g:ω\ times \ times \ times \ athbb {c} \ to \ mathbb {c} $,$ is $ isset n $ sept, $ n> 200万美元。

We prove a Brezis--Kato regularity type results for solutions of the higher order nonlinear elliptic equation \[ L u = g(x,u)\qquad\text{in }Ω\] with an elliptic operator $L$ of $2m$ order with variable coefficients and a Carathéodory function $g:Ω\times \mathbb{C}\to\mathbb{C}$, where $Ω\subset\mathbb{R}^N$ is an open set with $N > 2m$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源