论文标题
概率密度函数的融合
Fusion of Probability Density Functions
论文作者
论文摘要
融合概率信息是信号和数据处理的基本任务,与许多技术和科学领域相关。在这项工作中,我们研究了连续随机变量或向量的多个概率密度函数(PDF)的融合。尽管连续随机变量和PDF融合的问题经常在多传感器信号处理,统计推断和机器学习中出现,但不存在普遍接受的PDF融合方法。与PDF融合有关的方法,观点和解决方案的多样性激发了该领域理论和方法论的统一介绍。我们讨论了融合PDF的三种不同方法。在公理方法中,融合规则是通过一组属性(公理)间接定义的。在优化方法中,这是最大程度地减少涉及信息理论差异或距离度量的目标函数的结果。在上bayesian方法中,融合中心将PDF解释为融合为随机观察。我们的工作部分是一项调查,以结构化和连贯的方式审查文献中开发的许多概念和方法。此外,我们为这三种方法中的每一种都提出了新的结果。我们最初的贡献包括新的融合规则,公理以及基于公理和优化的特征;从有限维参数化方面的上山叶层融合的新表述;以及对线性高斯模型后PDF的上bayesian融合的研究。
Fusing probabilistic information is a fundamental task in signal and data processing with relevance to many fields of technology and science. In this work, we investigate the fusion of multiple probability density functions (pdfs) of a continuous random variable or vector. Although the case of continuous random variables and the problem of pdf fusion frequently arise in multisensor signal processing, statistical inference, and machine learning, a universally accepted method for pdf fusion does not exist. The diversity of approaches, perspectives, and solutions related to pdf fusion motivates a unified presentation of the theory and methodology of the field. We discuss three different approaches to fusing pdfs. In the axiomatic approach, the fusion rule is defined indirectly by a set of properties (axioms). In the optimization approach, it is the result of minimizing an objective function that involves an information-theoretic divergence or a distance measure. In the supra-Bayesian approach, the fusion center interprets the pdfs to be fused as random observations. Our work is partly a survey, reviewing in a structured and coherent fashion many of the concepts and methods that have been developed in the literature. In addition, we present new results for each of the three approaches. Our original contributions include new fusion rules, axioms, and axiomatic and optimization-based characterizations; a new formulation of supra-Bayesian fusion in terms of finite-dimensional parametrizations; and a study of supra-Bayesian fusion of posterior pdfs for linear Gaussian models.