论文标题

基于TEE的分散推荐系统:原始数据共享赎回

TEE-based decentralized recommender systems: The raw data sharing redemption

论文作者

Dhasade, Akash, Dresevic, Nevena, Kermarrec, Anne-Marie, Pires, Rafael

论文摘要

当今许多应用程序中的推荐人是核心。最有效的建议方案,例如基于协作过滤(CF)的计划,它利用用户配置文件之间的相似性来提出建议,但可能会揭示私人数据。联合学习和分散的学习系统通过让数据留在用户的机器上以保护隐私来解决这一问题:每个用户对本地数据进行培训,并且仅共享模型参数。但是,在整个网络上共享模型参数可能仍会产生隐私漏洞。在本文中,我们介绍了雷克斯(Rex),这是第一个基于飞地的分散CF推荐人。 Rex利用可信赖的执行环境(TEE),例如Intel软件防护扩展(SGX),它们在处理器内提供屏蔽环境,以改善收敛的同时保留隐私。首先,REX启用了原始数据共享,这最终会加快收敛性并减少网络负载。其次,Rex完全保留了隐私。我们分析了原始数据共享在深神经网络(DNN)和矩阵分解(MF)推荐人中的影响,并展示了可信环境在REX的全面实施中的好处。我们的实验结果表明,通过原始数据共享,REX将训练时间显着减少了18.3倍,而网络负载则与仅共享参数的标准分散方法相比,将网络负载降低了2个数量级,同时通过利用可信赖的硬件空地来充分保护隐私,几乎没有太大的头顶。

Recommenders are central in many applications today. The most effective recommendation schemes, such as those based on collaborative filtering (CF), exploit similarities between user profiles to make recommendations, but potentially expose private data. Federated learning and decentralized learning systems address this by letting the data stay on user's machines to preserve privacy: each user performs the training on local data and only the model parameters are shared. However, sharing the model parameters across the network may still yield privacy breaches. In this paper, we present REX, the first enclave-based decentralized CF recommender. REX exploits Trusted execution environments (TEE), such as Intel software guard extensions (SGX), that provide shielded environments within the processor to improve convergence while preserving privacy. Firstly, REX enables raw data sharing, which ultimately speeds up convergence and reduces the network load. Secondly, REX fully preserves privacy. We analyze the impact of raw data sharing in both deep neural network (DNN) and matrix factorization (MF) recommenders and showcase the benefits of trusted environments in a full-fledged implementation of REX. Our experimental results demonstrate that through raw data sharing, REX significantly decreases the training time by 18.3x and the network load by 2 orders of magnitude over standard decentralized approaches that share only parameters, while fully protecting privacy by leveraging trustworthy hardware enclaves with very little overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源