论文标题

快速学习在线时间序列预测

Learning Fast and Slow for Online Time Series Forecasting

论文作者

Pham, Quang, Liu, Chenghao, Sahoo, Doyen, Hoi, Steven C. H.

论文摘要

在非平稳环境中,深神经网络的快速适应能力对于在线时间序列预测至关重要。成功的解决方案需要处理新的和经常性模式的更改。但是,众所周知,训练深层神经预报掌握在适应非平稳环境和对旧知识的灾难性遗忘的能力上,这是具有挑战性的。在这项工作中,受互补学习系统(CLS)理论的启发,我们提出了快速和慢的学习网络(FSNET),这是一个在线时间序列的整体框架,预测同时处理突然的变化和重复模式。特别是,FSNET通过动态平衡快速适应最近的变化并检索类似的旧知识来改善缓慢学习的主链。 FSNET通过适配器的两个互补组件之间的相互作用来实现此机制,以监视每层对丢失的贡献,以及一个关联内存,以支持记忆,更新和回忆重复事件。关于真实和合成数据集的广泛实验验证了FSNET对新模式和经常性模式的功效和鲁棒性。我们的代码可在\ url {https://github.com/salesforce/fsnet}上找到。

The fast adaptation capability of deep neural networks in non-stationary environments is critical for online time series forecasting. Successful solutions require handling changes to new and recurring patterns. However, training deep neural forecaster on the fly is notoriously challenging because of their limited ability to adapt to non-stationary environments and the catastrophic forgetting of old knowledge. In this work, inspired by the Complementary Learning Systems (CLS) theory, we propose Fast and Slow learning Networks (FSNet), a holistic framework for online time-series forecasting to simultaneously deal with abrupt changing and repeating patterns. Particularly, FSNet improves the slowly-learned backbone by dynamically balancing fast adaptation to recent changes and retrieving similar old knowledge. FSNet achieves this mechanism via an interaction between two complementary components of an adapter to monitor each layer's contribution to the lost, and an associative memory to support remembering, updating, and recalling repeating events. Extensive experiments on real and synthetic datasets validate FSNet's efficacy and robustness to both new and recurring patterns. Our code is available at \url{https://github.com/salesforce/fsnet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源