论文标题
关于耐力空间上多线性傅立叶乘数的界限
On the boundedness of multilinear Fourier multipliers on Hardy spaces
论文作者
论文摘要
在本文中,我们研究了耐力空间上的多线傅立叶乘数运算符。 In particular, we prove that the multilinear Fourier multiplier operator of Hörmander type is bounded from $H^{p_1} \times \cdots \times H^{p_m}$ to $H^p$ for $0<p_1,\dots,p_m\le 1$ with $1/p_1 + \cdots 1/p_m = 1/p$, under suitable cancellation conditions.结果,我们将作者(Arxiv:2107.00225)的三线性估计扩展到一般的多线性估计,并在极限情况下在限制情况下,提高了作者,Lee,Heo,Hong,Hong,Park和Yang的界限结果(Math。381:499-555,2021)。
In this paper, we study multilinear Fourier multiplier operators on Hardy spaces. In particular, we prove that the multilinear Fourier multiplier operator of Hörmander type is bounded from $H^{p_1} \times \cdots \times H^{p_m}$ to $H^p$ for $0<p_1,\dots,p_m\le 1$ with $1/p_1 + \cdots 1/p_m = 1/p$, under suitable cancellation conditions. As a result, we extend the trilinear estimates of the authors(arXiv:2107.00225) to general multilinear ones and improve the boundedness result of the authors, Lee, Heo, Hong, Park, and Yang(Math. Ann. 381 : 499-555, 2021) in limiting situations.