论文标题
社区趋势预测电子商务中的异质图
Community Trend Prediction on Heterogeneous Graph in E-commerce
论文作者
论文摘要
在在线购物中,不断变化的时尚趋势使商人需要准备更多差异化的产品以满足多样化的需求,并且电子商务平台需要以预言的愿景来捕捉市场趋势。对于趋势预测,作为项目的基本描述,属性标签可以真正反映消费者的决策基础。但是,现有的作品很少探索电子商务特定社区的属性趋势。在本文中,我们关注对项目属性的社区趋势预测,并提出了一个统一的框架,该框架结合了两种图形模式的动态演变,以预测特定社区的属性趋势。具体来说,我们首先在每个时间步骤中设计一个communityAttribute的二分图,以了解不同社区的协作。接下来,我们将双方图将其转换为超图,以利用一个社区中不同属性标签的关联。最后,我们基于复发性神经网络引入了动态演化组件,以捕获属性标签的时尚趋势。大型电子商务平台中三个现实世界数据集的广泛实验表明,该方法的优越性优于几种强大的替代方案,并证明了预先发现社区趋势的能力。
In online shopping, ever-changing fashion trends make merchants need to prepare more differentiated products to meet the diversified demands, and e-commerce platforms need to capture the market trend with a prophetic vision. For the trend prediction, the attribute tags, as the essential description of items, can genuinely reflect the decision basis of consumers. However, few existing works explore the attribute trend in the specific community for e-commerce. In this paper, we focus on the community trend prediction on the item attribute and propose a unified framework that combines the dynamic evolution of two graph patterns to predict the attribute trend in a specific community. Specifically, we first design a communityattribute bipartite graph at each time step to learn the collaboration of different communities. Next, we transform the bipartite graph into a hypergraph to exploit the associations of different attribute tags in one community. Lastly, we introduce a dynamic evolution component based on the recurrent neural networks to capture the fashion trend of attribute tags. Extensive experiments on three real-world datasets in a large e-commerce platform show the superiority of the proposed approach over several strong alternatives and demonstrate the ability to discover the community trend in advance.