论文标题

数据变化 - 感知的医学图像细分

Data variation-aware medical image segmentation

论文作者

Dushatskiy, Arkadiy, Lowe, Gerry, Bosman, Peter A. N., Alderliesten, Tanja

论文摘要

深度学习算法已成为分割医学成像数据的黄金标准。在大多数作品中,实际临床数据的可变性和异质性仍然是一个问题。自动克服这一点的一种方法是明确捕获和利用这种变化。在这里,我们提出了一种改善我们以前在该领域的工作的方法,并解释了它可能如何改善(半)自动分割方法的临床接受。与产生一种分割的标准神经网络相反,我们建议使用产生多个分割变体的多式式式网络网络,大概与数据集中存在的变体相对应。网络的不同路径是在不相交数据子集上训练的。由于先验的数据可能不清楚数据中存在哪些变化,因此应自动确定子集。这是通过使用进化优化算法搜索最佳数据分配来实现的。由于在更均匀的数据子集中训练时,每个网络路径都可以变得更加专业,因此可以实现更好的分割质量。在实际用途时,可以将各种自动生产的分割介绍给医学专家,从中可以选择首选的分割。在使用前列腺分割的CT扫描的真实临床数据集进行的实验中,我们的方法可改善几个百分点的骰子和表面骰子系数,与所有网络路径在所有培训数据上训练时相比。明显的是,最大的改进发生在前列腺的上部,已知最容易出现观察者间的分割变化。

Deep learning algorithms have become the golden standard for segmentation of medical imaging data. In most works, the variability and heterogeneity of real clinical data is acknowledged to still be a problem. One way to automatically overcome this is to capture and exploit this variation explicitly. Here, we propose an approach that improves on our previous work in this area and explain how it potentially can improve clinical acceptance of (semi-)automatic segmentation methods. In contrast to a standard neural network that produces one segmentation, we propose to use a multi-pathUnet network that produces multiple segmentation variants, presumably corresponding to the variations that reside in the dataset. Different paths of the network are trained on disjoint data subsets. Because a priori it may be unclear what variations exist in the data, the subsets should be automatically determined. This is achieved by searching for the best data partitioning with an evolutionary optimization algorithm. Because each network path can become more specialized when trained on a more homogeneous data subset, better segmentation quality can be achieved. In practical usage, various automatically produced segmentations can be presented to a medical expert, from which the preferred segmentation can be selected. In experiments with a real clinical dataset of CT scans with prostate segmentations, our approach provides an improvement of several percentage points in terms of Dice and surface Dice coefficients compared to when all network paths are trained on all training data. Noticeably, the largest improvement occurs in the upper part of the prostate that is known to be most prone to inter-observer segmentation variation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源