论文标题

超导人工分子与微波波导的工程对称性选择耦合

Engineering symmetry-selective couplings of a superconducting artificial molecule to microwave waveguides

论文作者

Aamir, Mohammed Ali, Moreno, Claudia Castillo, Sundelin, Simon, Biznárová, Janka, Scigliuzzo, Marco, Patel, Kowshik Erappaji, Osman, Amr, Lozano, D. P., Gasparinetti, Simone

论文摘要

将结构化量子发射器的衰减速率定制到其环境中,为非线性量子光学,集体现象和量子通信开辟了新的途径。在这里,我们演示了一个新的耦合方案,其中包括两个相同的,强耦合的transmon Qubits和两个微波波指导的人工分子之间。在我们的方案中,耦合是设计的,因此相对于置换操作员,相同(相反)对称性的状态之间的过渡主要耦合到一个(另一个)波导。通过耦合强度比量化的基于对称的耦合选择性对于我们设备中的两个波导都超过了30倍。此外,我们通过同时驱动两个波导激活的两光子拉曼过程,并表明它可用于在分子的单激素歧管中连贯对照不同对称性的状态。使用该过程,我们实施了由分子介导的波导跨波导的频率转换,效率约为95%。最后,我们表明,这种耦合布局使得可以直接生成在波导上传播的空间分离的钟状状态。我们设想进一步应用于量子热力学,微波光调整和光子 - 光子门。

Tailoring the decay rate of structured quantum emitters into their environment opens new avenues for nonlinear quantum optics, collective phenomena, and quantum communications. Here we demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides. In our scheme, the coupling is engineered so that transitions between states of the same (opposite) symmetry, with respect to the permutation operator, are predominantly coupled to one (the other) waveguide. The symmetry-based coupling selectivity, as quantified by the ratio of the coupling strengths, exceeds a factor of 30 for both the waveguides in our device. In addition, we implement a two-photon Raman process activated by simultaneously driving both waveguides, and show that it can be used to coherently couple states of different symmetry in the single-excitation manifold of the molecule. Using that process, we implement frequency conversion across the waveguides, mediated by the molecule, with efficiency of about 95%. Finally, we show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides. We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源