论文标题
振荡的磁性杂种恒星在放大镜的多门观测玻璃下
Oscillating magnetised hybrid stars under the magnifying glass of multi-messenger observations
论文作者
论文摘要
我们在核心中将中子星作为磁性杂交恒星的磁性杂种恒星在其核心中突然进行了夸克夸克相变,考虑到了核实验和多理解剂观测的当前限制。考虑到带电颗粒的Landau水平定量和中性颗粒的异常磁矩,我们包括磁场效应。我们构建了状态的磁性混合方程,并计算颗粒群,物质磁化以及横向和平行压力成分。我们集成了稳定的恒星模型,考虑了\ emph {japid}或\ emph {slow} hadron-quark相位转换的动力稳定性。最后,我们计算了基本基本的频率和阻尼时间和$ g $ non-Radial振荡模式。后者是一种了解紧凑对象中相变的关键模式,仅对转换缓慢的恒星才能获得。对于低磁场,我们发现GW170817二进制系统的一个对象之一可能是属于慢速扩展稳定性分支的混合恒星。对于磁铁,我们发现更强的磁场始终软化状态的悬岩方程。此外,仅对于某些参数组合,更强的磁场就意味着较高的杂种恒星最大质量。与先前的结果相反,异常磁矩的掺入不会影响所研究的天体物理量。我们讨论了可能在未来观察的状态方程的微物理学的可能烙印,这可能有助于推断密集物质和混合恒星的性质。
We model neutron stars as magnetised hybrid stars with an abrupt hadron-quark phase transition in their cores, taking into account current constraints from nuclear experiments and multi-messenger observations. We include magnetic field effects considering the Landau level quantisation of charged particles and the anomalous magnetic moment of neutral particles. We construct the magnetised hybrid equation of state, and we compute the particle population, the matter magnetisation and the transverse and parallel pressure components. We integrate the stable stellar models, considering the dynamical stability for \emph{rapid} or \emph{slow} hadron-quark phase conversion. Finally, we calculate the frequencies and damping times of the fundamental and $g$ non-radial oscillation modes. The latter, a key mode to learn about phase transitions in compact objects, is only obtained for stars with slow conversions. For low magnetic fields, we find that one of the objects of the GW170817 binary system might be a hybrid star belonging to the slow extended stability branch. For magnetars, we find that a stronger magnetic field always softens the hadronic equation of state. Besides, only for some parameter combinations a stronger magnetic field implies a higher hybrid star maximum mass. Contrary to previous results, the incorporation of anomalous magnetic moment does not affect the studied astrophysical quantities. We discuss possible imprints of the microphysics of the equation of state that could be tested observationally in the future, and that might help infer the nature of dense matter and hybrid stars.